2.1 Conditional Statements

Conditional Statements
Logical statement with two parts
•
•
Often written in If-Then form
If part contains
Then part contains
If <u>we confess our sins</u> , then <u>He is faithful and just to forgive us our sins</u> . 1 John 1:9
If-then Statements $p \rightarrow q$
The if part implies that the then part
The then part imply that the first part happened.
If you are hungry, then you should eat.
John is hungry, so
Megan should eat, so
Negation ~p
The board is white.
Converse $q \rightarrow p$
If we confess our sins, then he is faithful and just to forgive us our sins.
<i>p</i> =
<i>q</i> =
Converse = If, then Does not necessarily make a true statement (He may be faithful and just, but many people still don't ask for forgiveness.)
Inverse $\sim p \rightarrow \sim q$
If we confess our sins, then he is faithful and just to forgive us our sins.
= we confess our sins
= he is faithful and just to forgive us our sins
Inverse = If, then
Not necessarily true (He is still faithful and just even if we do not confess.)

Geometry 2.1			Name:	
Contrapositive	$\sim q \rightarrow \sim p$			
If we confess our sins, then he is faithful an	nd just to forgive us our sins.			
<i>p</i> = we confess our sins	q = he is faithful and just to for	give us our sins		
Contrapositive = If		, th	en	·
Always true.				
Write the following in If-Then form and the	en write the converse, inverse, a	nd contrapositive	e	
All whales are mammals.				
Biconditional Statement				
Logical statement where the	and		are both true	
Written with "if and only if"				
An angle is a right angle if and only if it mea				
All definitions can be written as	and		statements	
Perpendicular Lines				m 🛦
Lines that intersect to		m	_ r	r
Write this definition as a biconditional stat	ement.			$ \xrightarrow{\Gamma} $
	- de state en antie terre - Frederic - se		ale a de Castate a como	have been ad
Use the diagram shown. Decide whether each (1945 and (5946) are supplemented)		-		nave learned.
1. $\angle JMF$ and $\angle FMG$ are supplementary			<i>г</i>	
2. Define the state of \overline{U}				G
2. Point <i>M</i> is the midpoint of \overline{FH}				M
2 (MAE and ///MAC and youthing) and a			A SI	H
3. $\angle JMF$ and $\angle HMG$ are vertical angles.				,
4. $\overleftarrow{FH} \perp \overrightarrow{JG}$				
4. ΓΠ⊥JU				

Assignment: 69 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 30, 32, 49, 68, 71, 74, 76 = 20 total

2.2A Inductive Reasoning

Conje	cture and Inductive Reasoning			
Conject	ture			
•	statement base	ed on		
Inducti	ve Reasoning			
٠	First find a ir Second write a	າ	cases	
•		for the	case	
Sketch	the fourth figure in the pattern			
Describ	e the pattern in the numbers 1000, 500,	250, 125, and write th	he next three numbers in the pattern	
Given t	he pattern of triangles below, make a co	njecture about the numb	ber of segments in a similar diagram with 5 tria	angles
Make a	nd test a conjecture about the product o	of any two odd numbers	5	
Provi	ng by Inductive Reasoning			
The on	y way to show that a conjecture is true is	s to		

To show a conjecture is false is to show ______ where it is false

This case is called a ______

Find a counterexample to show that the following conjecture is false The value of x^2 is always greater than the value of x

2.2B Deductive Reasoning

eductive Reasoning	
e,,,,,	, to form an argument.
ductive reasoning	
true	
■→	
luctive reasoning	
true	
■→	
ws of Logic	
law of Detachment	
he of a true conditional statement is	, then the is also
tach means, so the 1 st statement is _	·
If we confess our sins, he is faithful and just to forgive us our sins.	1 John 1:9
Jonny confesses his sins.	
God is faithful and just to forgive Jonny his sins.	
If you love me, keep my commandments.	
If you love me, keep my commandments.	
	g,, _,

Geometry 2.2B Name: Law of Syllogism If hypothesis , then conclusion If we confess our sins, then conclusion . If we confess our sins, the is faithful and just to forgive us our sins. If He is faithful and just to forgive us our sins, then we are blameless. If we confess our sins, then we are blameless. If you love me, keep my commandments.

- 2. If you keep my commandments, you will be happy.
- 1. If you love me, keep my commandments.
- 2. If you love me, then you will pray.
- 3.

3.

Assignment: 78 #16, 17, 18, 19, 21, 22, 24, 25, 26, 30, 32, 34, 40, 51, 54 = 15 total

2.3 Postulates and Diagrams

Postulates and Theorems
Postulate
Rule that is
Theorem
Rule that is
Basic Postulates
Through any there exists exactly
A line contains at least
If two intersect, then their intersection is exactly
Through any points there exists exactly
A plane contains at least three
 If two points lie in a, then the line containing them lies in the
If two intersect, then their intersection is a
Which postulate allows you to say that the intersection of plane P and plane Q is a line? Use the diagram to write examples of the 1 st three postulates.

Interpreting a Diagram

You Can Assume

- All points shown are coplanar
- $\angle AHB$ and $\angle BHD$ are a linear pair
- $\angle AHF$ and $\angle BHD$ are vertical angles
- A, H, J, and D are collinear
- \overrightarrow{AD} and \overrightarrow{BF} intersect at H

You Cannot Assume

- G, F, and E are collinear
- \overrightarrow{BF} and \overrightarrow{CE} intersect
- \overrightarrow{BF} and \overrightarrow{CE} do not intersect
- $\angle BHA \cong \angle CJA$
- $\overrightarrow{AD} \perp \overrightarrow{BF}$

Р

• m∠*AHB* = 90°

G

Geometry 2.3	Name:
Sketch a diagram showing $\overrightarrow{FH} \perp \overrightarrow{EG}$ at its midpoint <i>M</i> .	
	R
State whether each of the follow can be assumed.	
A, B, and C are collinear	\uparrow
$\overleftarrow{EF} \perp$ line ℓ	
$\overrightarrow{\mathit{BC}} \perp plane \ \mathcal{R}$	
\overrightarrow{EF} intersects \overrightarrow{AC} at B	s s
EF intersects AL at B	
line $\ell \perp \overleftrightarrow{AB}$	
Points <i>B</i> , <i>C</i> , and <i>X</i> are collinear	

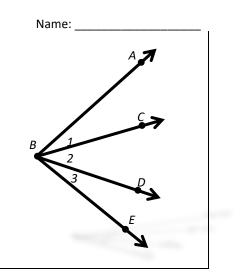
Assignment: 85 #2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 25, 26, 31, 32, 36, 38, 39 = 20 total

2.4 Algebraic Reasoning

	neasure are from geometry using	just like from algebra t	, so you can solve o justify each step.
Property of Equality	Example		
Reflexive			
Symmetric			
Transitive			
Add and Subtract			
Multiply and divide			
Substitution			
Distributive			

Name the property of equality the statement illustrates.

If $m \angle 6 = m \angle 7$, then $m \angle 7 = m \angle 6$.

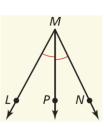

If JK = KL and KL = 12, then JK = 12.

 $m \angle W = m \angle W$

Solve the equation and write a reason for each step 14x + 3(7 - x) = -1

Solve $A = \frac{1}{2}bh$ for b.

Geometry 2.4 Given: $m \angle ABD = m \angle CBE$ Show that $m \angle 1 = m \angle 3$

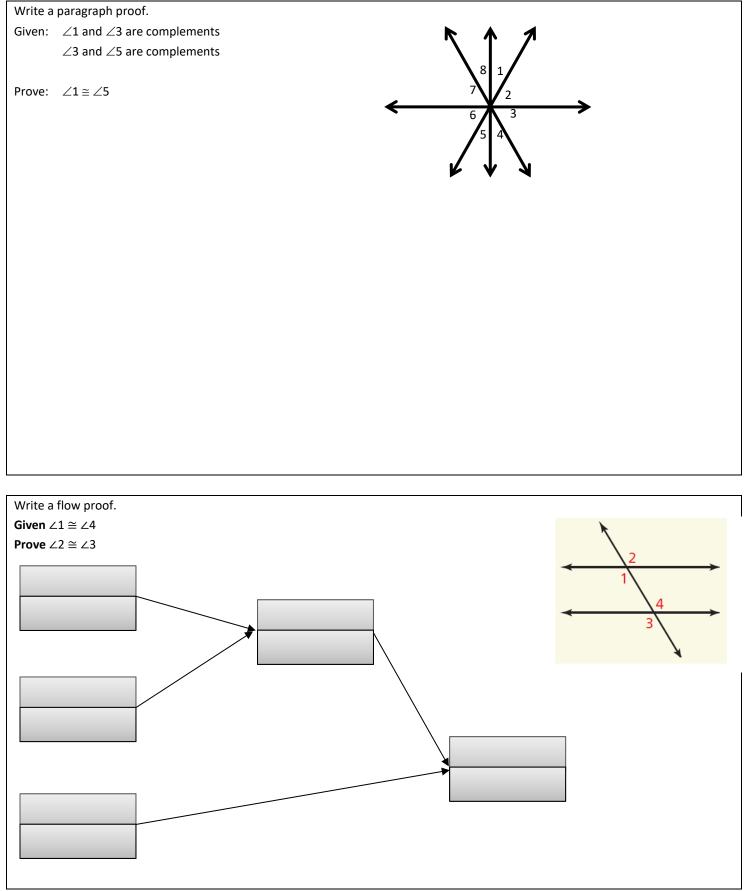

Assignment: 92 #2, 4, 6, 8, 10, 16, 20, 22, 24, 28, 30, 32, 34, 36, 38, 53, 54, 60, 61, 63 = 20 total

2.5 Proving Statements about Segments and Angles

Given: Loaf of bread, jar of peanut butter, and jelly sitting on counter					
Prove: Make a peanut butter and je	lly sandwich				
Congruence of segments an	d angles is reflexive, syn	metric, and transi	itive.		
Writing proofs follow the same step	as the sandwich.				
1. Write the	and	written at the top	for refere	nce	
2. Start with the	as step 1				
3. The steps need to be in an	order				
4. You cannot use an object witho	out it				
5. Remember the hypothesis state	es the	you are working wi	th, the co	nclusion states w	hat you are
wi	th it				
6. If you get stuck ask, "Okay, now	v I have What do I kr	low about?" al	nd look at	the	
of your theorems, definitions, a	and properties.				
Complete the proof by justifying each	ch statement.			•	
Given: Points P, Q, and S are colline	ar		Р	Q	S
Prove: PQ = PS - QS					
Statements	Reasons				
Points P, Q, and S are collinear					
PS = PQ + QS					
PS = QS = PQ					
PS - QS = PQ					
PQ = PS - QS					

Geometry 2.5 Write a two column proof Given: $\overline{AC} \cong \overline{DF}$, $\overline{AB} \cong \overline{DE}$	Name:
Prove: $\overline{BC} \cong \overline{EF}$	
Statements	Reasons

Prove this property of angle bisectors: If you know \overline{MP} bisects $\angle LMN$, prove that two times $m \angle LMP$ is $m \angle LMN$. Given: \overline{MP} bisects $\angle LMN$ Prove: $2(m \angle LMP) = m \angle LMN$



Assignment: 99 #1, 2, 4, 6, 10, 12, 14, 16, 17, 18, 23, 24, 25, 27, 30 = 15 total

2.6 Proving Geometric Relationships

Theorems			
All right angles are	·		
]
Congruent Supplements Theorem			
If two angles are	_ to the same angle (or to c	congruent angles), then they are	
Congruent Complements Theorem			
If two angles are	_ to the same angle (or to c	congruent angles), then they are	
Linear Pair Postulate			
If two angles form a	, then they are	·	
Vertical Angles Congruence Theore	em		
Vertical angles are	·		
Find x and y		3r - 2	
		$\frac{y}{2x+4}$	
Given: $\ell \perp m$, $\ell \perp n$ Prove: $\angle 1 \cong \angle 2$			
From $21 = 22$			
		\leftarrow	
		2 ` ↓	
Statements		Possons	
Statements		Reasons	\neg

Geometry 2.6

Geometry Chapter 2 Review

Describe the pattern in the numbers. Write the next number.

- 1. -6, -1, 4, 9, ...
- 2. 100, -50, 25, -12.5, ...

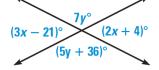
Write the converse, the inverse, and the contrapositive for the given statement.

- 3. If they are right angles, then they are congruent.
- 4. If it is a frog, then it is an amphibian.

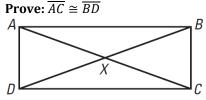
Make a valid conclusion based on the information. Then state whether you used the *Law of Detachment* or the *Law of Syllogism*.

- If Margot goes to college, then she will major in Chemistry. If Margot majors in Chemistry, then she will need to buy a lab manual.
- 6. If you decide to go to the football game, then you will miss band practice. Tonight, you are going the football game.

Fill the blanks.


- 7. If two points lie in a plane, then the ____ containing them lies in the ____.
- 8. A line contains at least ____ points.
- 9. Through any three noncollinear points there exists exactly one _____.
- 10. A plane contains at least _____ noncollinear points.
- 11. If two lines intersect, then their intersection is exactly one _____.
- 12. If two planes intersect, then their intersection is a ____.
- 13. Through any ___ points there exists exactly one ____.

Solve the equation. Write a reason for each step.


- 14. 9x + 31 = -23
- 15. -7(-x+2) = 42
- 16. 26 + 2(3x + 11) = -18x

Name the statement with the property that it illustrates.

- 17. If $\angle RST \cong \angle XYZ$, then $\angle XYZ \cong \angle RST$
- 18. $\overline{PQ} \cong \overline{PQ}$
- 19. If $\overline{FG} \cong \overline{JK}$ and $\overline{JK} \cong \overline{LM}$, then $\overline{FG} \cong \overline{LM}$.
- 20. Find the measure of each angle in the diagram.

21. Write a two-column proof. **Given:** $\overline{AX} \cong \overline{DX}, \overline{XB} \cong \overline{XC}$

Name: _

Answers

- 1. Add 5; 14
- 2. Multiply by $-\frac{1}{2}$; 6.25
- Converse: If the angles are congruent, then they are right angles. Inverse: If the angles are not right angles, then they are not congruent. Contrapositive: If the angles are not congruent, then they are not right angles.
- Converse: If it is an amphibian, then it is a frog. Inverse: If it is not a frog, then it is not an amphibian. Contrapositive: If it is not an amphibian, then it is not a frog.
- 5. If Margot goes to college, then she will need to buy a lab manual.; Law of Syllogism.
- 6. You will miss band practice .: Law of Detachment
- 7. Line; Plane
- 8. Two
- 9. Plane
- 10. Three
- 11. Point
- 12. Line
- 13. Two; Line

14. $9x + 31 = -23$ 9x = -54 x = -6	Given Subtrac Division	
15. $-7(-x + 2) = 42$ -x + 2 = -6 -x = -8 x = 8	Given Division Subtrac Division	tion
16. $26 + 2(3x + 11) =$ 26 + 6x + 22 = -13 48 + 6x = -18x 48 = -24x -2 = x		Given Distributive Property Simplify Subtraction Division

- x = -2 17. Symmetric
- 18. Reflexive
- 19. Transitive
- 20. 54°, 54°, 126°, 126°

21.	1. $AX \cong DX, XB \cong XC$	Given
	2. $AX = DX, XB = XC$	Definition of Congruent Segments
	3. $AX + XC = AC, BX + XD = BD$	Segment Addition Postulate
	4. $DX + XC = AC, XC + XD = BD$	Substitution
	5. $AC = BD$	Substitution (or Transitive)
	6. $\overline{AC} \cong \overline{BD}$	Definition of Congruent Segments

Symmetric